

ED Engine

Published by Chonan Technical Service Training Center

Objectives

To understand line-up of ED engine system.

To understand gamma engine system

To understand the troubleshooting method

ED has 4 types of engine. 2 for gasoline (gamma 1.6, beta-2.0). 2 for Diesel CRDI (U-1.6, D-2.0). Gamma gasoline engine is used for Cerato F/L. It is following engine for alpha II. Beta 2.0 engine is changed a little. U engine is applied for Cerato F/L and D engine is used for KM(Sportage), MG(magentis), UN(Carens).

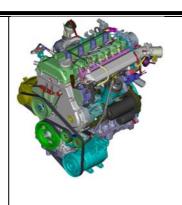
.

All gasoline engine (Beta 2.0, Gamma 1.6) has a CVVT system. U-1.6 VGT and D-2.0 VGT are EURO IV emission engine which has additional components compared with EURO III emission engine.

1. System introduction

1-1 Engine line-up

Item		Gasoline		
		Gamma 1.6L	Beta 2.0L	
Fuel Injection ty	ре	MPI	MPI	
Displacement (c	c)	1,591	1,975	
Bore x Stroke (m	nm)	77.0 x 85.44	82.0 x 93.5	
Timing system		Chain	Belt	
Dorformono	Output max.	118	143	
Performance	Torque max.	15.4	19.0	
Appearance				


wrong!

Item		Diesel		
		U-1.6L	D-2.2L	
Fuel Injection type		CRDi (1600 bar)	CRDi (1600 bar)	
Displacement (cc)		1,582	1,991	
Bore x Stroke (mm)		75 x 77.2	83.0 x 92	
Timing system		Chain	Belt	
Performance	Output max.	116	140	
	Torque max.	26.5	31	

ED ENGINE

Appearance

ED has 4 types of engine. 2 for gasoline (gamma 1.6, beta-2.0). 2 for Diesel CRDI (U-1.6, D-2.0). Gamma gasoline engine is used for Cerato F/L. It is following engine for alpha II. Beta 2.0 engine is changed a little. U engine is applied for Cerato F/L and D engine is used for KM(Sportage), MG(magentis), UN(Carens).

.

All gasoline engine (Beta 2.0, Gamma 1.6) has a CVVT system. U-1.6 VGT and D-2.0 VGT are EURO IV emission engine which has additional components compared with EURO III emission engine.

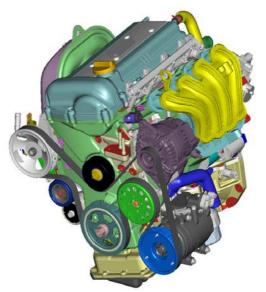
2. Gamma 1.6L engine

2.1 General information

Gamma engine called alpha III is following of alpha II. Many mechanical components are changed but EMS is same as alpha II. gamma engine use BOSCH EMS.

Below things are gamma's main features:

- 1) Reverse position for intake, exhaust manifold
 - Similar as the theta engine intake manifold is locate forward to improve cooling efficiency and repair ability.
- 2) Offset crank shaft applied by 10mm
 - To increase inertia moment offset crank shaft is used.
- 3) High pressure casting aluminum block and ladder frame
- To increase coherence add more ribs and cylinder blomade from aluminum.


- One belt type driving belt is applied.

5) Timing chain

- Timing chain rotate intake and exhaust camshaft at the same time same as theta.

6) CVVT

- Denso CVVT is applied. (Beta, gamma, theta CVVT are same mechanically but operating range is different.
- 7) Direct driven valve train [solid tappet]
 - MLA (Mechanical Lash Adjuster) type valve train is applied.
- 8) Plastic intake manifold
 - Length/Cross-sectional shape is optimized for enhancing torque at all rpm zone.
 - As the material is changed (aluminum plastic), the air flowing resistance is enhanced so the output and torque is increased

9) Stainless steel exhaust manifold

- Stainless steel exhaust manifold is applied to prevent from cooling down the exhaust gas temperature quickly.

2.2 Specification

NO		ITEM	UNIT	1.6L CVVT	REMARKS
1	DISPLACEMENT		СС	1591	
2		BORE	mm	77	
3		STROKE	mm	85.44	
4	S	TROKE / BORE RATIO	-	1.11	
5		VALVE NO./ CYL.	-	4	
6		CAM ARRANGEMENT	-	DOHC	
7	COMPRESSION RATIO		-	10.5	
8	COMBUSTION CHAMBER		-	Pentroof (In&Ex squish)	
9	ENG. DRY WEIGHT(AT/MT)]		kg	96.6 / 102.8	
10	VALVE	IN (BTDC/ABDC)	DEG	-10/63, D:236	
10	TIMING	EX(BBDC/ATDC)	DEG	40/3, D:223	
11		MAX. POWER	PS / rpm	118 / 6200	
12		MAX. TORQUE	Kgm / rpm	15.4 / 4200	
13	ENG. RATED SPEED		rpm	6200	
14	F	PISTON MEAN SPEED	m/s	17.7	
15		FUEL SYSTEM	-	MPI	
16		FUEL	Liter	45	

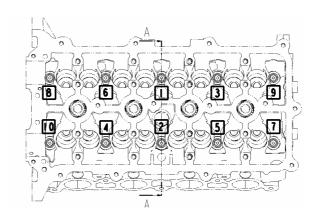
2.3 Main features

Timing chain

EX manifold

CVVT

HLA (Shimless type)

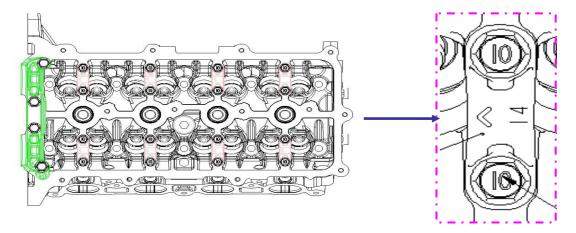

	Effect						
ltem	Perform ance	Emission	NVH	Weight	Cost	Endura nce	Remark
Al cylinder block	•			•			
Reverse In/Ex Mani	•	•	•	•			
суут	•	•					
Solid Tappet	•				•		
Timing Chain						•	
Serpentine belt			•	•		•	
Intergrated ECU/TCU					•		
SUS Ex/Mani	•	•				•	
Ladder Frame			•				
Offset crank	•						

2.4 Cylinder head

- AC2B-T7 aluminum

- Weight: 9.5kg

Tightening sequence


- Tightening torque : 2.0kgf-m + 90° + 100°

2.4.1 Cylinder head bolt

Above picture shows cylinder head bolt of gamma (left) and theta (right) engine. When an assembling or disassembling use 10mm double hexagon socket. If use hexagon socket then head bolt screw thread is damaged. For reference in case of theta use 12mm double hexagon socket.

2.5 Camshaft cap

There is an arrow mark on camshaft cap. When assembling let that arrow mark face to timing chain side.

2.6 PCM

Main features of M7.9.8 are 2 chips CPU, 400MHz internal clock, waterproof, 24 channel A/D converter, 2 CAN Module, 154 pin connector, wheel speed sensor interface integrated, 768K flash memory and so on.

To make communication to PCM with hi-scan pro, you must use can interface module since CAN communication protocol is used instead of KWP2000 for DTC only in Gasoline engine. Using can protocol communication speed is increased from 10kbps to 38.4kbps. There are two terminals for CAN communication in 16 OBD 2 connector. So when you try communication, you must use this.

2.7 Valve train

1) CVVT

- Type : vane type

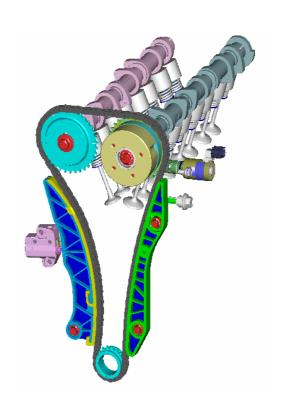
- Angle : 50°(Retard ~ Advanced)

- CVVT common using (alpha, beta. Theta)

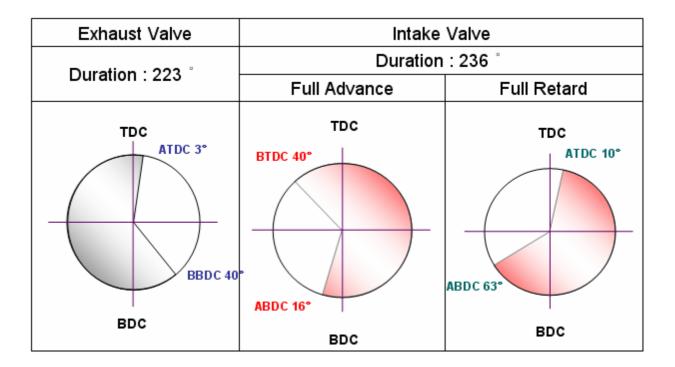
2) TIMING DRIVE

- Timing chain (Bush chain, pitch:8mm)

- Ratchet type oil pressure auto tensioner

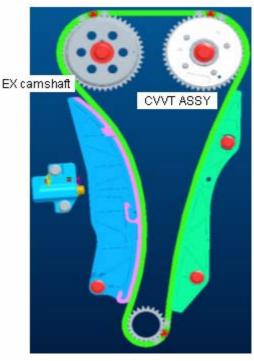

3) CAMSHAFT

- Weight: 1.700kg (Intake)


- Hollow camshaft

4) TAPPET

- Shim-less mechanical tappet (MLA)



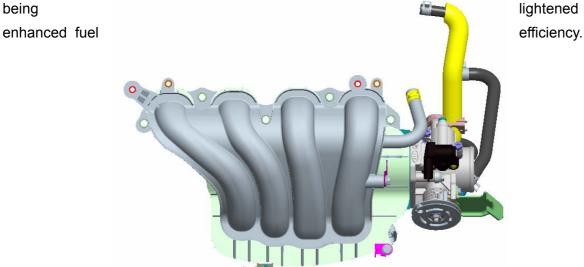
2.7.1 Timing chain system

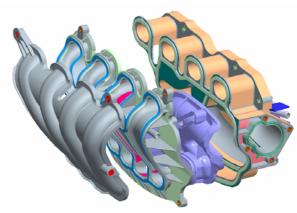
- By employing low noise chain, the chain meshing noise and crashing noise are reduced
- Reinforcing timing chain cover strength and enhancing the sounds
- The endurance is enhanced by changing the timing chain
- By employing variable valve timing system, the torque for low or middle speed is optimized and fuel efficiency is enhanced

2.7.2 Installing method for timing chain and auto tensioner

- Dispose the crank axis sprocket half-circle key to the horizontal line of the cylinder block assembling surface to align with 1st cylinder top dead center.
- 2) Meet the TDC mark of the intake-/ exhaust cam shaft sprocket to the upper surface of the cylinder head. (There are two marks on the cam shaft sprocket surface. Between them, align to the ' 'TDC mark. Note: '•': Timing Chain Mark)
- 3) Turn the timing chain to meet the crank axis sprocket timing mark ('•') to the middle position of the colored link of the chain.

- 4) Meet the intake ∕ exhaust cam shaft sprocket timing mark ('•') to the middle position of the colored link of the chain.
- 5) Install the timing chain guide (A).
- 6) Install the timing chain guide (B).
- 7) Install the auto tensioner after fixing it with a fixing pin by pushing the rod of the auto tensioner thoroughly.
- 8) After the fixing pin is removed, check the timing chain whether it is properly installed or not.
- 9) After turn the crank axis shaft with two rotations, check the timing chain mark. [Remark]
- When the timing chain is installed, do not apply excess force (to prevent the timing chain link being distorted)


2.8 Intake manifold

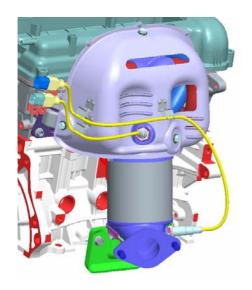

- Length / Cross-sectional shape is optimized for enhancing torque at all rpm zone.
- As the material is changed (aluminum plastic), the air flowing resistance is enhanced so the output and torque is increased

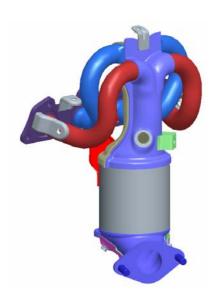
The intake manifold is a pipe system for leading the air into the cylinder with reducing the resistance of air flow.

The intake manifold applied to the Theta engine by being made of plastic material has lower resistance in air flow than the

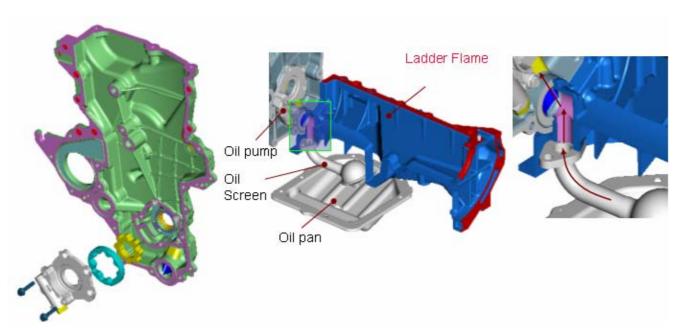
manifold made of aluminum so that the intake efficiency is enhanced and the total weight of engine is

to

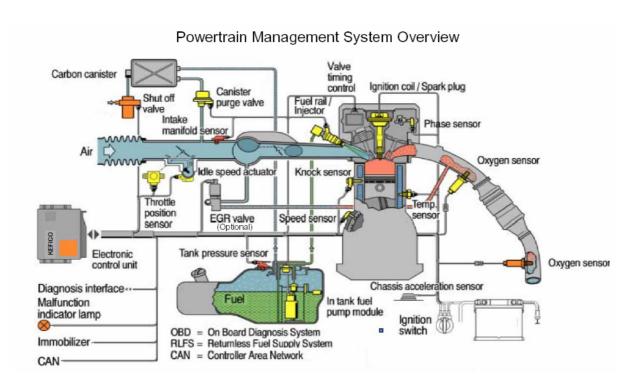

get



2.9 Exhaust manifold


- Length / Cross-sectional shape are optimized for enhancing torque at all rpm zone.
- As the material is changed (iron cast stainless steel), heat resistance is enhanced.

This is device for gathering and exhausting the combusted gas in the cylinder through the exhaust pipe. Generally, this is made of cast iron. However, for theta engine, the exhaust manifold is made of stainless and optimized in the length and cross-sectional area. As a result, the heat resistance is enhanced.



2.10 Oil pump

2.11 EMS

3. Changed items for gamma and beta

3.1 Air flow sensor

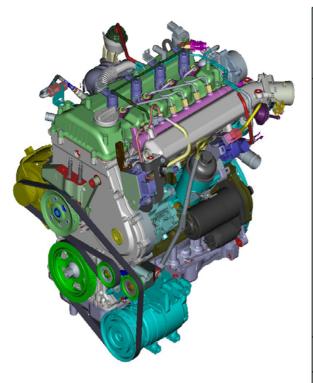
Gamma and beta engine have a MAP (Mass Air Pressure) sensor for detecting air volume. In case of LD CVVT engine has an MAF (Mass Air Flow) sensor and non-CVVT engine is MAP. But in ED all gasoline engine have a MAP sensor.

	Before	After	
Shape	MAF SENSOR WITH TIA 09 4416 02 VDA CONNECTOR CODE 8	COMB. MAP SENSOR (ATS/MAP) Y280 A62 566A CODE I (4 POLE) (TERMINAL I, 3, 4: GOLD PLATE)	
Pin	5 pin	4 pin	

	Before	After		
Assembling	Air Flow Sensor	MAP		
Assembling sequence	A/CLEANER BOX + O-RING + AFS + BOLT 2ea + AIR DUCT + CLAMP	IN/MANI + MAP + BOLT 1ea		

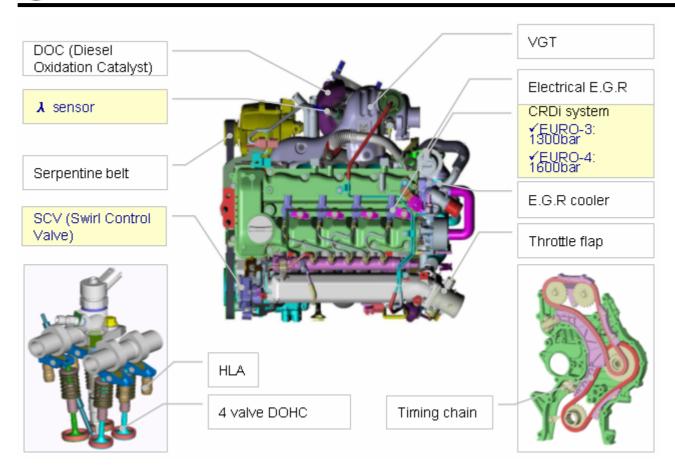
3.2 TPS (Throttle Position Sensor)

Insert type (before) [


15

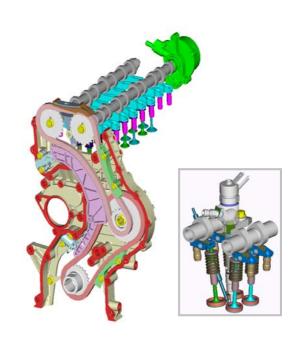
Lever type

4. U-1.6 EURO IV engine

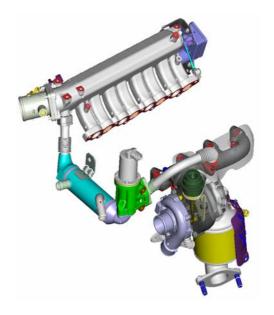


Engine		U-1.5	U-1.6	
		(EURO 4)	(EURO 4)	
Cylinder		4 cy	lider	
	Displacement (cc)	1,493	1,582	
Main featur e	Bore (mm)	75	77.2	
	Stroke (mm)	84.5		
	Valve type	DOHC-4 valve		
	Cam operating	Chain		
Injection		CRDi (1600bar)		
Max. output (PS)		112	117	
Max. to	orque (kgxm)	24.5 26.5		

In ED euro IV emission engine is applied. Compare with euro III emission engine to meet the more restrict emission regulation added some components like as VGT, SCV(Swirl Control Valve), lambda sensor, IQA(Injection Quantity Adaptation) injectors and so on. Main features are below:

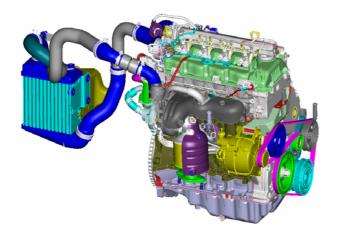

- (1) DOHC I type 4valve Cyl. Turbo intercooler
- (2) CRDi system (1600bar)
- (3) Electrical EGR & EGR cooler
- (4) VGT (Variable Geometry Turbo
- (5) Timing chain
- (6) Serpentine belt
- (7) Bed plate
- (8) SCV (Swirl control Valve)
- (9) Throttle flap
- (10) Lambda sensor

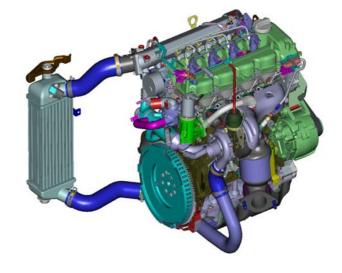
4.1 Timing system


- DOHC 4 Valve
- VALVE operating type:
 - : END PIVOT ROLLER SWING ARM
- CAM operating type : 2 Chains
- Hollow camshaft

4.2 Intake exhaust manifold

- (1) VGT
- (2) SCV (Swirl Control Valve)
- (3) Electrical EGR VALVE
- (4) WCC (Warm-up Catalytic Converter)
- (5) EGR COOLER




5.3 Driving belt (serpentine belt)

	With A/C	Without A/C
Appearance		

4.4 Intercooler system

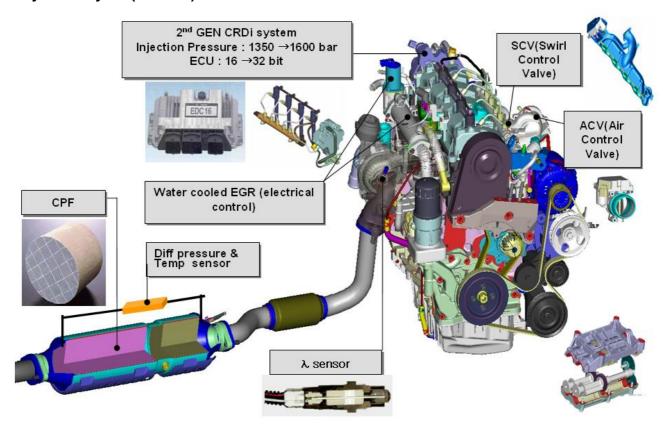
LD **U1.5 VGT**

ED U1.6 VGT EURO-4

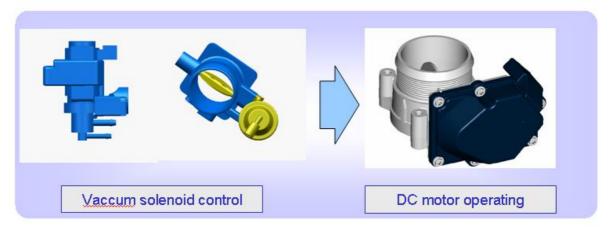
4.5 Changed items compared with LD U-1.5 (EURO-3)

	Item	Changed thing	Remark
	Cylinder block	Bore increased (ϕ 75 \rightarrow ϕ 77.2)	
Increased displacement	Cylinder head gasket	Changed shape	
	Piston	Diameter increased (ϕ 75 \rightarrow ϕ 77.2)	
	CRDi	Injection pressure increased (1350bar → 1600bar)	
EURO-4	EGR cooler	Applied (₱54)	U1.5 EURO-4
(Performance, emmission)	SCV(Swirl Control Valve)	Applied	Common parts
	Lambda sensor	Applied	

5. D-2.0L CRDi

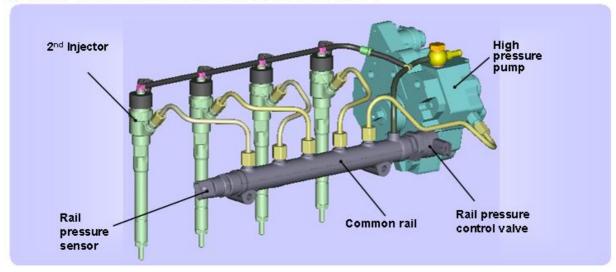

5.1 Comparison of EURO-3, EURO-4

EURO-3	EURO-4		
(1) 1st GEN CRDi	(1) 2nd GEN CRDi		
1350 bar	1600 bar,		
16-bit ECU	32-bit ECU		
	λ control		
(2) Mechanical EGR	(2) Cooled Electrical EGR		
	(3) Swirl control valve : ETC		
(3) Turbo charger	(4) VGT		
	(5) CPF(Catalyzed Particulate Filter)		

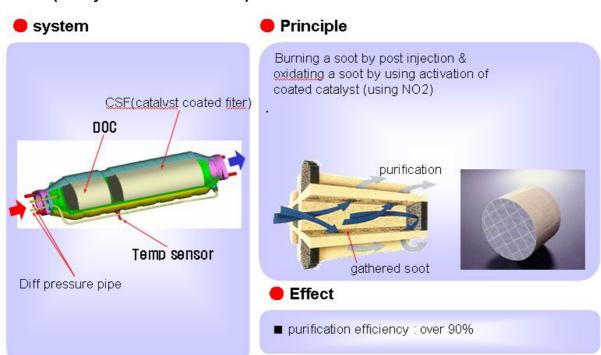

	Items	EURO-III	E	JRO-IV	Remark
со		0.64g/km	0.	50g/km	
	Nox	0.50g/km	0.	25g/km	
Emission regulation	нс	0.56g/km	0.	30g/km	
	PM	0.05g/km	0.0)25g/km	
	soot	15%		10%	
	Speed	16 bit CPU	32	bit CPU	
ECM	Pins	121		154	
	Location	internal	Eng	ine room	Depending on vehicle
Λ(Oxygen) sensor	•	X		0	For EGR control
CPF(Catalyzed Particulary Filter)		x	U-Eng	-	Reduce PM
		^	D-Eng	0	
CPF Diff pressure	& temp sensor	X	U-Eng	-	Detect internal pressure &
		X	D-Eng	0	temp
SCV(Swirl Contro	I Valve)	х	0		Reduce smoke during low-mid
Fuel temp sensor		Х	0		
Rail pressure	MPROM	0		0	Inlet control – A, J Eng
control	PCV(Pressure Control Valve)	х		0	Outlet control – D Eng
Injector	Multi-injection	1 Pilot, 1 Main	2 Pilot, 1 Main,2 Post		D-Eng: 2 Post injection
Pressure		250~1350bar	250	~1600bar	
	type Classfied (C1,C2,C3) 7-code (IQA)				
Throttle flap control	Control time	Key off (NVH reduced)	-Key off (NVH reduced) -always (support EGR)		Close the throttle when a key is off to prevent from dieseling.
/ = -	way	ON/OFF	PWM control (300Hz)		

5.2 System Layout (EURO-4)

5.3 ACV (Air Control Valve)


Effect

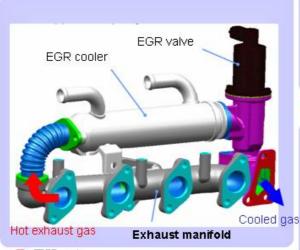
- Reducing exhaust gas (by DC motor => increasing responsibility
- Reducing component (simple component)


5.4 2nd Generation CRDi System

CRDi system (Injection pressure : 1600 bar)

- Effect
- 1600bar high pressure injection => Fuel injection volume optimizing control

5.5 CPF (Catalyzed Particulate Filter)



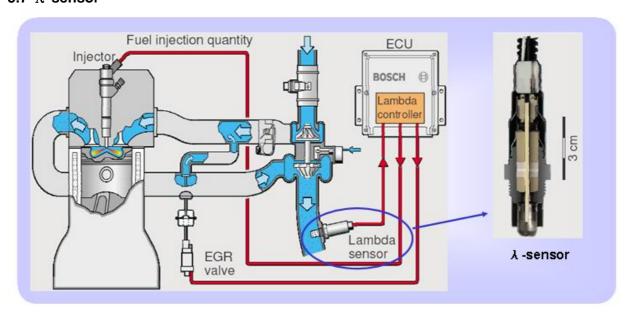
5.6 Water cooled EGR (electrical control)

System

EGR cooler

- type : water cooled
- efficiency : over 53%
- ■length : 210 mm
- ■diameter : ϕ 54 mm
- ■weight : 0.98 kg

Electrical EGR valve

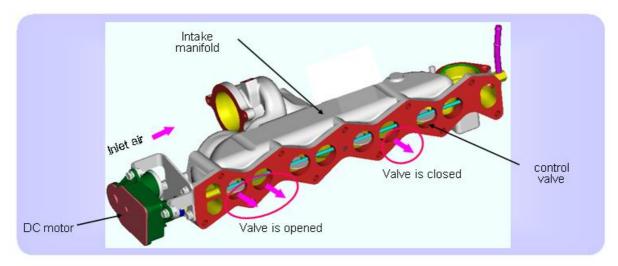


- type : linear solenoid
- diameter : Ø 22mm
- Max flow vol.
 - : 88 ± 8 kg/hr (at 85%)
- Control signal : PWM (140 Hz)
- Control voltage: 13.5 V

Effect

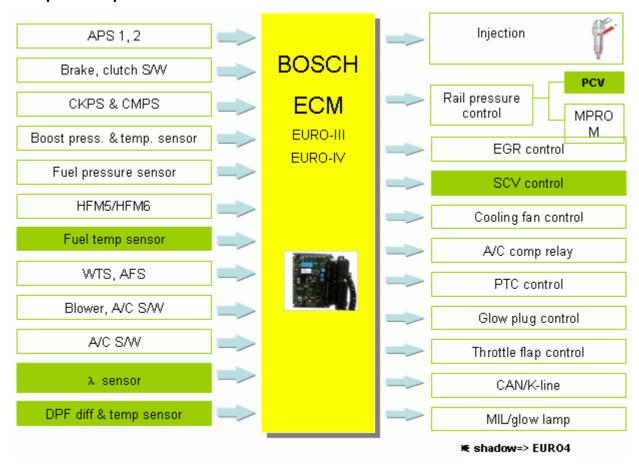
- EGR cooler reducing temp of hot exhaust gas & increasing vol. of recirculating gas NOx & PM reduced
- Electrical EGR valve ☞ deviation 50% reducced ☞ accurate EGR control

5.7 λ sensor



Effect

■ EGR feedback control → accurate exhaust gas control (10~20% additional reducing)


5.8 SCV(Swirl Control Valve)

Effect

- Optimizing the inlet air volume depending on driving condition
 - Mid-low speed→ valve closed → increasing swirl → reducing exhaust gas high speed → valve opened → increasing inlet air flow → increasing torque

5.9 Input & Output

